Formulas for Xbar R

Formula for calculation in Xbar-R Chart?

Term Description
xij x_{ij} jth observation in the ith subgroup
ni n_i number of observations in subgroup i
x \sum x sum of all individual observations
n \sum n total number of observations
μ μ process mean
k k parameter for Test 1 (The default is 3)
σ σ process standard deviation
d2(.) d_2 (.) value of unbiasing constant d2 that corresponds to the value specified in parentheses
d3(.) d_3 (.) value of unbiasing constant d3 that corresponds to the value specified in parentheses
ri r_i range for subgroup i
m m number of subgroups
xi \overline x_i mean of subgroup i
µν µ_ν mean of the subgroup variances
c4(.) c_4 (.) value of the unbiasing constant c4 that corresponds to the value that is specified in parentheses
c5(.) c_5 (.) value of the unbiasing constant c5 that corresponds to the value that is specified in parentheses
Γ() Γ() gamma function

 

  • Formula for Xbar Chart

    • Plotted Points:

...........................Each plotted point, xi \overline x_i , represents the mean of the observations for subgroup,i i .

xi=j=1nixijni \overline x_i = \frac{\sum\limits_{j=1}^{n_i} x_{ij}}{n_i}

    • Center Line:

      The center line represents the process mean (µ).

X=xn \overline{\overline{X}} = \frac{∑x}{∑n}

    • Control Limits:

      • Lower Control Limit:

        The value of the lower control limit for each subgroup, i i , is calculated as follows:

LCLi=µkσ(ni) LCL_i= µ- \frac{kσ}{√(n_i )}

      • Upper Control Limit:

        The value of the upper control limit for each subgroup, i i , is calculated as follows:

UCLi=µ+kσ(ni) UCL_i= µ+ \frac{kσ}{√(n_i )}

  • Formula for R Chart

    • Plotted Points:

      Each plotted point, ri r_i , represents the range for subgroup i i .

    • Center Line:

      The value of the center line for each subgroup, Ri \overline R_i , is calculated as follows:

Ri=d2(ni)×σ \overline R_i= d_2(n_i) × σ

    • Control Limits:

      • Lower Control Limit:

        The value of the lower control limit for each subgroup i i is equal to the greater of the following:

LCLi=[d2(ni)×σ][kσ×d3(ni)] LCL_i= [d_2(n_i) × σ] - [kσ×d_3(n_i)]

.......................................or

LCLi=0 LCL_i= 0

      • Upper Control Limit:

        The value of the upper control limit for each subgroup i i  is calculated as follows:

UCLi=[d2(ni)×σ]+[kσ×d3(ni)] UCL_i= [d_2(n_i) × σ] + [kσ×d_3(n_i)]

  • Formula for estimation of sigma (standard deviation)

    • Using Rbar Method:

............................Zometric uses the range of each subgroup, ri r_i , to calculate Sr S_r , which is an unbiased estimator of σ:

Sr=i(firid2(ni))ifi S_r = \frac{\sum\limits_{i}^{} (\frac{f_i r_i}{d_2 (n_i)})}{\sum\limits_{i}^{} {f_i}}

............................where

fi=[d2(ni)]2[d3(ni)]2 f_i = \frac{[d_2 (n_i)]^2}{[d_3 (n_i)]^2}

............................When the subgroup size is constant, the formula simplifies to the following:

Sr=Rd2(ni) S_r = \frac{\overline R}{d_2 (n_i)}

............................where

R=rim \overline R = \frac{\sum r_i}{m}

    • Using pooled standard deviation method:

............................The pooled standard deviation (Sp) is given by the following formula:

Sp=ij(xijxi)2i(ni1) S_p = \sqrt\frac{\sum\limits_{i}^{} \sum\limits_{j}^{} (x_{ij}-\overline x_i)^2 }{\sum\limits_{i}^{} (n_{i}-1)}

.............................When the subgroup size is constant, Sp can also be calculated as follows:

Sp=µν S_p = \sqrt µ_ν

  • Formulae for unbiasing constants

    • d2() d_2 () :

............................For values of N from 51 to 100, use the following approximation for d2(N):

d2(N)=3.4873+0.0250141×N0.00009823×N2 d_2 (N) = 3.4873 + 0.0250141 × N - 0.00009823 × N^2

    • d3() d_3 () and d4() d_4 () :

............................For values of N from 26 to 100, use the following approximations for d3(N) and d4(N):

d3(N)=0.808180.0051871×N+0.00005098×N20.00000019×N3 d_3 (N) = 0.80818 - 0.0051871 × N + 0.00005098×N^2 - 0.00000019 × N^3

d4(N)=2.88606+0.051313×N0.00049243×N2+0.00000188×N3 d_4 (N) = 2.88606 + 0.051313 × N - 0.00049243×N^2 + 0.00000188 × N^3

    • c4() c_4 () and c5() c_5 () :

c4(N)=2N1ΓN2ΓN12 c_4 (N) = {\sqrt \frac {2}{N-1}}\frac{Γ\frac{N}{2}}{Γ\frac{N-1}{2}}

c5(N)=1c4(N)2 c_5 (N) = \sqrt {1 - c_4(N)^2}